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Abstract
We reconsider the problem of the enhancement of tunnelling of a quantum particle induced by
disorder of a one-dimensional tunnel barrier of length L, using two different approximate
analytic solutions of the invariant embedding equations of wave propagation for weak disorder.
The two solutions are complementary for the detailed understanding of important aspects of
numerical results on disorder-enhanced tunnelling obtained recently by Kim et al (2008
Phys. Rev. B 77 024203). In particular, we derive analytically the scaled wavenumber (kL)
threshold where disorder-enhanced tunnelling of an incident electron first occurs, as well as the
rate of variation of the transmittance in the limit of vanishing disorder. Both quantities are in
good agreement with the numerical results of Kim et al. Our non-perturbative solution of the
invariant embedding equations allows us to show that the disorder enhances both the mean
conductance and the mean resistance of the barrier.

Growing attention has been devoted in recent years to an
intriguing phenomenon occurring when a quantum-mechanical
particle of energy E impinges on a disordered one-dimensional
tunnel barrier of mean height V > E . Indeed it was found
that the transmission coefficient of the barrier is increased by
the effect of a weak disorder [1–3]. This is surprising since
one would expect that the additional scattering of an incoming
electron by the disorder (e.g. random impurity potentials)
would reduce the transmission rather than enhancing it.

The interest in the study of the transmission of quantum
particles through disordered one-dimensional barriers [1–3]
was triggered by an earlier study of transmission of
scalar waves through disordered one-dimensional dielectric
media [4]. In this case, the increase of the transmission
coefficient with increasing disorder was first observed for
frequencies of the incident wave lying in the gap of the band
structure of the periodic medium in the absence of disorder [4].
The similarity between the quantum barrier and the dielectric
medium problems comes from the fact that wave frequencies
in the gap of the dielectric medium correspond to evanescent
wave solutions of the wave equation, which are analogous to
the evanescent states solutions of the Schrödinger equation for
energies E < V in the potential barrier problem.

Prior to the studies of transmission by disordered potential
barriers in [1–3], the author developed an extensive analytic
study of resistance and reflectance distributions in one-
dimensional disordered tunnel barriers in the context of

electron localization [5, 6]. These studies, based on the
invariant embedding method [7, 8], were motivated by
the development of a fully probabilistic scaling theory of
localization [9] in these systems where localization effects
coexist with the familiar barrier penetration (tunnelling)
effects [5, 6].

The purpose of this brief paper is first to apply
the approximate solution for the reflection amplitude
of a disordered barrier obtained in [5] for deriving
analytic expressions for mean disorder-enhanced transmission
coefficients and to compare the results with previous
works [1–3]. In particular, we are interested in understanding
an important new aspect of the transmission of a disordered
barrier of length L revealed by the numerical results of Kim
et al [3], namely the existence of a threshold value of the scaled
particle wavenumber kL above which transmission is enhanced
by the disorder while being reduced by the disorder below it.

On the other hand, it is found that the thresholds
for enhanced transmission obtained numerically [3] vary
significantly with the relative barrier height V/E . In order to
understand this behaviour, it is necessary to develop a solution
of the invariant embedding equations for arbitrary barriers
V/E > 1, in parallel to the solution in [5] which is specific
to the case V/E = 2. Such a solution based on perturbation
theory for weak disorder is discussed below and applied to
study the disorder-enhanced tunnelling. The relative merits of
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the two types of solutions for describing the disorder-enhanced
tunnelling are discussed towards the end of the paper.

On the other hand, we close by pointing out that the
non-perturbative invariant embedding solution for a tunnelling
barrier in [5], which does lead to the phenomenon of disorder-
enhanced tunnelling, also leads to the exponential growth of
resistance and conductance of a disordered barrier discussed
earlier by Freilikher et al [1].

We consider an electron of energy E = h̄2k2/2m (with
units such that h̄ = m = 1) which impinges from the right on
a random one-dimensional tunnel barrier

V (x) = V + v(x), (1)

confined to the region 0 � x � L. V denotes the mean of
V (x) and v(x) is a weak Gaussian white noise:

〈v(x)v(x ′)〉 = ξδ(x − x ′), 〈v(x)〉 = 0. (2)

Outside the barrier the particle is described by the
wavefunction

ψ(x) = e−ik(x−L) + r(L) eik(x−L), x > L, (3a)

ψ(x) = t (L)e−ikx , x < 0, (3b)

where the complex reflection and transmission coefficient
amplitudes r(L) ≡ r and t (L) ≡ t are determined by the
invariant embedding equations [7]

ik
dr(L)

dL
= −2k2r(L)+ V (L)(1 + r(L))2, (4)

ik
dt (L)

dL
= −k2t (L)+ V (L)(1 + r(L))t (L). (5)

In [5] we discussed a useful approximate solution of (4) valid
within some energy interval around the value E = V/2 such
that for the most typical values of (1) one has

2E − V � v(L). (6)

In this case the rhs of (4) is approximately V (L)(1 + r(L)2)
and the solution of (4) subject to r(0) = 0 is [5]

r(L) = −i tanh

[
1

k

∫ L

0
dL ′V (L ′)

]
. (7)

By inserting (7) in (5) we obtain the corresponding exact
solution for the amplitude transmission coefficient:

t (L) = ei(kL−∫ L
0 dL ′V (L ′))

cosh[ 1
k

∫ L
0 dL ′V (L ′)] , (8)

which is valid for energies of the incident electron close to
V/2. Note that (7), (8) verify probability conservation:

|r(L)|2 + |t (L)|2 = 1, (9)

as required.
The solution (7) of the invariant embedding equation (4)

for E � V/2 has been further discussed by Haley and

Erdös [10] in the context of the resistance, ρ(L), of the
disordered barrier defined by the Landauer formula

ρ(L) = |r(L)|2
1 − |r(L)|2 . (10)

These authors also developed a more general result for the
Landauer resistance of a disordered barrier valid for any value
of V/E .

We first address the question of the disorder-enhanced
tunnelling across the potential barrier (1) for weak disorder.
More precisely, by expanding |t (L)|2 in (8) to second order in
k−1

∫ L
0 dL ′v(L ′) assumed to be small and averaging over the

disorder using (2), we get

〈|t (L)|2〉 = 1

cosh2 V L
k

[
1 + ξL

k2

(
3 tanh2 V L

k
− 1

)]
. (11)

It follows that the sign of the effect of the disorder on the
transmittance of the barrier is given by the sign of the factor
3 tanh2(V L/k) − 1. Thus, we find that for parameters such
that exp(−2V L

k ) < 2 − √
3, the transmission coefficient of the

disordered barrier is enhanced by the effect of weak disorder.
The threshold value

V L

k
= √

V L = kL = −1

2
ln(2 − √

3) � 0.659, (12)

above which the mean transmission coefficient (11) increases
with increasing disorder is in reasonable agreement with the
critical value kL � 0.58 at which the effect of the disorder
in the transmittance changes sign in the results of figure 2
of [3]. Below this threshold value of kL the disorder reduces
the transmittance while above it the disorder enhances it.

On the other hand, following Kim et al, we define the
effective disorder parameter

g = ξ

k3
, (13)

in terms of which we obtain from (11) (with V = 2E = k2)

d〈|t (L)|〉2

dg
= kL

cosh2 kL
(3 tanh2 kL − 1). (14)

This defines the initial rate (i.e. near g = 0) of variation
of the transmittance as a universal function of the scaled
wavenumber kL, both above and below the threshold. The
expression (14) may be compared with the slopes at the origin
of the transmittances as a function of g in figure 2 of [3] for
various values of kL. This comparison is shown in table 1,
indicating a quite reasonable agreement between the two sets
of results.

The enhancement of the transmittance of the tunnel
barrier for weak disorder suggests, of course, a non-monotonic
variation at larger disorder since beyond sufficiently large
disorder the transmittance necessarily decreases to zero. This
follows, for example, from the form of the typical transmission
coefficient obtained from (8):

|t (L)|2typical =
(〈

cosh2

[
1

k

∫ L

0
dL ′V (L ′)

]〉)−1

= 2

[
1 + e

2ξ L
k2 cosh

2V L

k

]−1

, (15)

2



J. Phys.: Condens. Matter 20 (2008) 395215 J Heinrichs

Table 1. Initial (g = 0) slopes of transmittances as a function of
disorder parameter g for various kL .

kL Kim et al [3] Equation (14) Equation (28)

0.3 −0.194 −0.205 −0.169
0.577 (0.58) 0 −0.076 0
0.6 0.025 −0.057 0.019
0.659 — 0 0.068
1 0.414 0.311 0.25
1.5 0.557 0.395 —
3 0.206 0.058 —

which vanishes for ξ → ∞. The result (15) is obtained by
using the well-known formula [11]〈

exp

[
±a

∫ L

0
v(L ′) dL ′

]〉
= exp

(
a2ξL

2

)
, (16)

for averages over Gaussian correlated variables defined by (2).
The non-monotonic behaviour of the transmittance as a
function of disorder is revealed in detail by the numerical
calculations in [3, 4].

We now turn to the discussion of a new simple
approximate solution of the invariant embedding equations,
which in contrast to (7), (8), will be valid for arbitrary E < V .
We first rewrite (4), (5) in terms of new amplitudes

q(L) = e−2ikLr(L), s(L) = e−ikL t (L), (17)

which lead to

ik
dq(L)

dL
= V (L)

(
e−ikL + eikL q(L)

)2
, (18)

ik
ds(L)

dL
= V (L)

(
1 + e2ikL q(L)

)
s(L). (19)

For kL 
 1 these equations reduce approximately to

ik
dq(L)

dL
� V (L) (1 + q(L))2 , (20)

ik
ds(L)

dL
� V (L) (1 + q(L)) s(L), kL 
 1, (21)

and may be readily solved with the boundary conditions
q(0) = 0 and s(0) = 1. We find

q(L) = 1

ik

(∫ L

0
dL ′V (L ′)

)[
1 − 1

ik

∫ L

0
dL ′V (L ′)

]−1

,

(22)

s(L) =
[

1 − 1

ik

∫ L

0
dL ′V (L ′)

]−1

, kL 
 1. (23)

Restricting our attention to the transmittance, |t (L)|2 =
|s(L)|2, we obtain from (1), (17) and (23)

|t (L)|2 = 1

1 + 1
k2

(
V L + ∫ L

0 dL ′V (L ′)
)2 . (24)

By expanding (24) to second order in the weak disorder v(L ′)
in (1) and averaging the resulting expression using (2) we
finally obtain

〈|t (L)|2〉 = 1

Q(L)

[
1 + ξL

k2 Q(L)

(
4V 2 L2

k2 Q(L)
− 1

)]
, (25)

with

Q(L) = 1 +
(

V L

k

)2

. (26)

The expressions (25)–(26) show the existence of a
wavenumber domain defined by 3( V L

k )
2 > 1, i.e.

kL >
2√
3

E

V
, (27)

where the transmittance is enhanced by the disorder. The
critical scaled wavenumber threshold, 2√

3
E
V , may be readily

compared with the critical thresholds for disorder-enhanced
transmission obtained numerically by Kim et al [3] and
displayed in their figures 3–5, successively for V/E = 1.5,
V/E = 2 and V/E = 3. From these figures we obtain the
critical values kL � 0.8 (V/E = 1.5), kL � 0.58 (V/E = 2)
and kL � 0.4 (V/E = 3), whose comparison with the results
kL = 0.77 (V/E = 1.5), kL = 0.577 (V/E = 2) and
kL = 0.385 (V/E = 3) obtained from (27) shows remarkable
agreement.

Finally we discuss the initial slopes, d〈|t (L)|2〉/dg|g=0,
of the mean transmittance (25) as a function of the disorder
parameter (13), for various scaled incident wavenumbers kL.
For the case V/E = 2 where numerical results for the
transmittance are available in figure 2 of Kim et al [3], we get

d〈|t (L)|2〉
dg

= kL(3(kL)2 − 1)

(1 + (kL)2)3
, kL 
 1. (28)

As shown in table 1, the agreement between the numerical
results obtained from (28) with those inferred from the results
of figure 2 of Kim et al [3] for various kL is again quite
reasonable.

In conclusion, we have presented two complementary
mathematical treatments demonstrating the existence of scaled
wavenumber thresholds for the appearance of disorder-
enhanced tunnelling of an electron and allowing us furthermore
to calculate analytically the initial rate of variation of
transmittance with the disorder as a function of the incident
wavenumber. Our results are in good agreement with extensive
numerical calculations of Kim et al [3].

We close with a brief comparison of our results for the
special energy (6) for large L with the results of Freilikher
et al [1] indicating that a weak disorder increases both the mean
resistance and the mean conductance of the tunnel barrier. The
resistance (ρ) of the barrier defined by the four-probe Landauer
formula is

ρ = |r(L)|2
|t (L)|2 ,

= sinh2

[
1

k

∫ L

0
dL ′V (L ′)

]
, (29)

using (7)–(9). For the conductance, g, the following two-probe
formula:

g = |t (L)|2, (30)

is to be preferred, following well-known arguments [12].
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From (2), (16) and (29) we obtain at long lengths such that
V L/k � 1 (with T0(L) = 4 exp(−2V L/k))

〈ρ〉 � 1

T0(L)
e

2ξ L
k2 , (31)

and from (8) and (30)

〈g〉 = 〈|t (L)|2〉 � T0(L) e
2ξ L
k2 . (32)

These expressions are similar to the results obtained earlier
by Freilikher et al [1], using a different method. Freilikher
et al [1] have given an interesting interpretation of the
simultaneous enhancement of the mean resistance and of the
mean conductance by the disorder. This has to do with the
fact that the resistance (29) and the conductance (30) of a
disordered barrier are not self-averaging quantities [5, 12].
Therefore, the realizations of the random barrier which are
responsible for the increase of the mean resistance and of the
mean conductance are not the most typical ones. Under these
conditions the analysis of Freilikher et al [1] suggests that the
mean resistance and the mean conductance are influenced by
different atypical realizations of the random tunnel barrier, in
such a way that both quantities are increased.

As a final remark, we highlight the advantage of
the approximate analytic solution (7), (8) of the invariant
embedding equations at the energy of half the tunnelling barrier

height, in the context of the present work. On the one hand,
this solution has enabled us to study the disorder-enhanced
transmittance at wavenumbers larger than those which are
accessible by means of the perturbation analysis discussed
above (see, in particular, table 1), which requires kL 
 1.
On the other hand, its non-perturbative character is crucial for
demonstrating the exponential growth of both the resistance
and the conductance shown previously in [1].
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